
M-DOT
Embedded Systems // Project Report

C Wiebe

May 9, 2025

Contents
1 Introduction 3

2 Preliminary Design 3
2.1 Servo Configuration . 4
2.2 General Timer Configuration . 4
2.3 Sonar Configuration . 4
2.4 Drivetrain Configuration . 4
2.5 Receiver Configuration . 5

3 Software Implementation 6

4 Hardware Implementation 8

5 Testing 9
5.1 Debugging . 9
5.2 Testing Methodology . 10
5.3 Results . 11

6 Q&A 11
6.1 Motor Driver . 11
6.2 IR Receiver . 11

7 Conclusion 12

8 Documentation 12

University of Placename

1 Introduction
M-DOT is a Arduino-based maze-navigating robot car programmed using ATmega328P
registers and a custom library. It uses two DC motors controlled by a L298 motor driver
to maneuver, along with an HC-SR04 ultrasonic sensor mounted to a SG90 servo to “see”
its surroundings. The goal of the project is to create a robot car that can successfully
navigate a maze-like obstacle course using its onboard sensor.

Additionally, M-DOT can be controlled remotely using an AX-1838HS IR receiver and
Elegoo controller. This functionality is not used in maze navigation — that is totally
autonomous.

2 Preliminary Design
The robot has four main external components that need to be configured: The servo, the
sonar (ultrasonic sensor), the drivetrain (DC motors), and the (IR) receiver. They are
connected to the Arduino UNO as seen in Figure 1

Figure 1: Initial design schematic.

All three timers are used in configuring these components, as seen in Table 1.

Table 1: Timer configurations.

Timer Purpose Mode Output(s)
timer0 Servo PWM Phase correct PWM OC0B

timer1 General timer Normal None
timer2 Drivetrain PWM Phase correct PWM OC2A, OC2B

[3]

University of Placename

2.1 Servo Configuration
In order to generate a PWM with the duty cycle and period expected by the SG90 servo,
timer0 was configured to use OCR0A as its TOP, the value of which can be found with
equation:

TOP = OCR0A =
CPU frequency × servo period

prescaler× 2
= 156.25 ≈ 156

where:

CPU frequency = 16 [MHz]

servo period = 20 [ms]

prescaler = 1024

Since OCR0A is being used as TOP, the PWM is generated on OC0B.

2.2 General Timer Configuration
General timer functions — such as those needed by the sonar — are provided by timer1.
To this end, the timer is configured in normal mode with no major modifications. The
timer does, however, make use of two interrupts:

1. The timer overflow interrupt, TOV1, which will be used to increment a counter and
track large spans of time.

2. The output compare A interrupt, OCIE1A, which will be used by the receiver to
determine when a data packet “times out”.

2.3 Sonar Configuration
The sonar uses two non-PWM pins — one output (trigger) and one input (echo) — along
with basic timer functions to measure signal lengths.

A reading begins by sending a ten microsecond pulse to the trigger. The duration of the
return signal recieved on echo is then measured and used to calculate the distance, using
the equation:

distance [cm] = echo duration [µs]× centimeters

microsecond

where:
centimeters

microsecond
= 58

Readings should be taken at least 60 milliseconds apart to prevent noise from interfering
with the measurement.

2.4 Drivetrain Configuration
Each drivetrain motor is hooked into the L298 motor driver with two pins. The Arduino
itself is connected to the L298 using a three-wire interface (three pins per motor):

[4]

University of Placename

• One wire is a PWM that connects to the motor enable pin and controls the “power”
of the motor.

• The other two (non-PWM) wires control the direction of the motor. When one pin is
HIGH and the other LOW, the motor spins one way; swap which pin is HIGH and
which is LOW to spin the motor the other way. Set both pins equal to each other to
“brake” the motor.

timer2 is used to generate the PWM signals needed for both motor enable wires. These
are generated on pins OC2A and OC2B.

2.5 Receiver Configuration
The IR receiver will be hooked up to an external interrupt (which is idle HIGH) so as to
prevent the need for constant polling. It will use timer1 as a pseudo watchdog timer by
enabling and disabling an output compare match interrupt.

The following process is used to receive data, which it stores in a global “data packet”:

1. The external interrupt ISR is configured to fire on the falling edge, but that trigger
will toggle between falling and rising edges each time it is called.

2. When a falling edge interrupt fires, the current timer count is stored in the data
packet and the watchdog timer is disabled, if it isn’t already.

3. When the rising edge interrupt fires, the timer count is cleared and the watchdog
timer is started. If the watchdog timer terminates, the data packet is marked as
complete and the process is reset.

Each data packet sent will begin with a start bit, followed by 32 data bits, and terminating
with an end bit. Each bit will consist of a “low half-bit” and a “high half-bit”. The low half
of the data bits is used to separate the high halves, which will contain the actual data: A
long time spent high is a logical 1, and a short time high is a logical 0. The time spent low
is funtionally irrevelent. Recorded times for the various half-bits can be seen in Table 2.

Table 2: Recorded half-bit lengths.

Type Time [ms]
Start low 9.336
Start high 4.456
Data X low 0.644
Data 0 high 0.504
Data 1 high 1.592
Stop low 0.656
Stop high 39.992

In order to properly identify 1’s and 0’s in the data segement, additional analysis was
conducted, as seen in Table 3. The valid range displayed in the table is the range that
will correctly identify 99.9999426697% of pulses (plus or minus five standard deviations).

[5]

University of Placename

Table 3: Average, standard deviation, and valid ranges for
data half-bits.

Type Avg [ms] Stdev [µs] Range [ms]
Data X low 0.661 16.60 0.578 to 0.744
Data 0 high 0.506 2.14 0.495 to 0.517
Data 1 high 1.592 9.90 1.542 to 1.641

With that, various buttons on the Elegoo IR controller were mapped to their corresponding
hex codes, and can be seen in Table 4.

Table 4: Recognized buttons.

Button Hex code
POWER 0x00FFA25D

VOL+ 0x00FF629D

FUNC/STOP 0x00FFE21D

FAST BACK 0x00FF22DD

PAUSE 0x00FF02FD

FAST FORWARD 0x00FFC23D

DOWN 0x00FFE01F

VOL- 0x00FFA857

UP 0x00FF906F

EQ 0x00FF9867

3 Software Implementation
M-DOT is programmed with a conceptually simple algorithm — Algorithm 1 — which
navigates by taking sonar measurements while stationary and moving in discrete bursts
based on those measurements. The four “cases” for how it moves are:

1. If an object is in the immediate drive path, pivot 90 degrees away from the wall.
2. Else if the wall is too close, curve away from it.
3. Else if the wall is very far (twice the ideal distance), curve sharply towards the wall.
4. Else, curve towards the wall.

The algorithm is designed so that there is not a hard-coded “target distance” from the
wall that M-DOT tries to reach — rather, the robot will measure its initial distance from
the wall on start-up and then try and maintain that distance throughout its travels.

CheckWall and CheckFront (Algorithms 2 and 3) are two near-identical processes that
simply return the difference between the ideal distance and the current following distance,
as measured from both the side and the front.

[6]

University of Placename

Algorithm 1: M-DOT’s primary process.
1 function Navigate is
2 idealDistance← measure distance to wall
3 while true do
4 wallMargin← CheckWall(idealDistance)
5 frontMargin← CheckFront(idealDistance)
6 if frontMargin < 0 then
7 pivot 90 degrees from wall
8 else if wallMargin < 0 then
9 curve away from wall

10 else if wallMargin > idealDistance then
11 curve sharply towards wall
12 else
13 curve towards wall

14 brake the robot

Algorithm 2: Measures the distance to the wall.
1 function CheckWall(idealDistance) is
2 currentDistance← measure distance to wall
3 return currentDistance− idealDistance

Algorithm 3: Measures the distance to the nearest obstacle.
1 function CheckFront(idealDistance) is
2 currentDistance← measure distance to front
3 return currentDistance− idealDistance

[7]

University of Placename

M-DOT also features a much faster wall-following algorithm, Algorithm 4, that is an
alternative to Navigate as a program “entry point”. This method does not account for
obstacles in the drive path, but neither does it constantly start and stop.

Algorithm 4: A simple wall-following algorithm for M-DOT.
1 function FollowWall is
2 idealDistance← measure the distance to the wall
3 tolerance← acceptable margin of error
4 while true do
5 currentDistance← measure the distance to the wall
6 if currentDistance > idealDistance+ tolerance then
7 drive curving towards the wall
8 else if currentDistance < idealDistance− tolerance then
9 drive curving away from the wall

10 else
11 drive straight ahead

4 Hardware Implementation
M-DOT is constructed in accordance with the initial design schematic seen in Figure 1
(which is also the final hardware schematic), with the pin assignments seen in Table 5.

Table 5: Pin assignments.

Component Arduino Pin ATmega328P Pin Special Function
Servo control 5 PD5 OC0B

Sonar trigger 7 PD7

Sonar echo 8 PB0

Motor A enable 11 PB3 OC2A

Motor A + 6 PD6

Motor A – 4 PD4

Motor B enable 3 PD3 OC2B

Motor B + 10 PB2

Motor B – 9 PB1

Error report 13 PB5 Built-in LED
IR signal 2 PD2 INT0

The sonar should be angled on its servo so that it is always facing a surface head-on. This
is because the wave sent out by the sonar needs to bounce of the surface and return —
if the surface is at an angle away from the sonar, the wave can bounce away and never
return, as seen in Figure 2.

[8]

University of Placename

Figure 2: If the sonar is at too large an angle with the surface it is facing, the return
signal could bounce away.

However, if the sonar is measuring along M-DOT’s center of rotation then it may not
detect the robot drifting off-course quick enough to prevent that angle from growing
dangerous, as seen in Figure 3.

To this end, the sonar is kept at a 30 degree offset from the wall, as seen in Figure 4 —
large enough to detect alterations to M-DOT’s drive path early, but small enough to still
receive a return wave that can measured with confidence.

5 Testing
5.1 Debugging
There were a few issues encountered during the testing process that had to be debugged,
all of which concerned the sonar. First and foremost among them was the fact that the
sonar could not get a reading from an angled surface, which was not considered during
the preliminary design and had to be adjusted for when implementing and testing the
project.

The other major hiccup was that the getSonarDistance() function (initially) did not force
the 60 millisecond measurement cycle itself, so it was easy to forget and try to take
back-to-back measurements.

Both of these issues where debugged by simply taking measurements with the sonar and
printing them to the serial monitor in a loop while observing the output.

Other design challenges that were encountered (but that are not considered “bugs” per
se) include:

[9]

University of Placename

Figure 3: The measured distance does
not differ much between the two points
when measuring along the center of ro-
tation.

Figure 4: There is a much more notice-
able difference between the measured
distances when measuring at an offset.

• A relatively slow angular velocity on the servo, which forced ~500 millisecond
measurement cycles when watching both the front and the side — 200ms per turn
and 60ms per sonar reading. This made moving while measuring dangerous at any
appreciable speed in the full navigation algorithm.

• Inaccurate sonar measurements while moving, which further encouraged using the
sonar while stationary.

• Drivetrain drift that varied based on how hot the motors are, which discouraged
using precise powers to drive the motors.

5.2 Testing Methodology
Testing of M-DOT happened in multiple stages:

1. Each component was tested individually to confirm basic functionality, e.g. checking
to make sure the servo spins and the sonar returns an accurate distance.

2. The drivetrain was tested for drift by driving it straight forward at max speed and
observing its path.

3. The range of angles at which the sonar can get a valid reading was measured by
taking readings at increasing angles until the output became unreliable.

4. The full program was then tested in various environments (carpeted floors vs. smooth
floors, varying initial distances from the wall, etc.).

[10]

University of Placename

5.3 Results
Each component was able to perform its basic functionality without trouble, though
the drivetrain as a whole did drift to the right by a not insignificant amount. This was
corrected for in the code by reducing the power sent to the left motor by five percent at
all times. The sonar was found to be able to take accurate measurements up to around
a 30 degree offset from the opposite surface, at which point the measurements became
unusable.

M-DOT then completed several tests verifying the functionality of its navigation algo-
rithms, such as following a wall1 with the simplified algorithm and navigating a small
course2 with the full algorithm.

6 Q&A
6.1 Motor Driver
How are the motors wired up? Is it a two or three wire interface? The motors

themselves are hooked into the L298 motor driver with two pins each. The Arduino
is connected to the L298 using a three-wire interface (three pins per motor): one
PWM pin specifying speed, and two pins controlling direction.

What will be done with the motor enable pins? The motor enable pins are con-
nected to PWM signals and used to control the speed of the motors.

What pins/timer will create the PWM signals? The PWM signals will be generated
on pins OC2A (Pin 11) and OC2B (Pin 3) using timer2.

How will the motors change direction? The direction of the motors will be controlled
by the non-PWM pins in the three-wire interface — when one pin is HIGH and the
other LOW, the motors spin forward; swap which pin is HIGH and which is LOW to
spin backwards.

6.2 IR Receiver
How long does timer1 take to roll over? Overflows take 262.14 milliseconds in my

implementation.
How long does a timer count last with a prescaler of 64? Given the CPU fre-

quency of 16 megahertz on the Arduino UNO, each count will last four microseconds.
How long are the pulses generated by the IR remote? Pulse lengths can be seen

in Table 2.
What is the average/standard deviation of each pulse type? Statistical analysis

on pulse lengths can be seen in Table 3.
What are the hex codes for the buttons on the IR remote? Button codes can be

seen in Table 4.
1https://www.youtube.com/watch?v=LuJOR8e18cY
2https://www.youtube.com/watch?v=sb-tt6APl8w

[11]

https://www.youtube.com/watch?v=LuJOR8e18cY
https://www.youtube.com/watch?v=sb-tt6APl8w

University of Placename

7 Conclusion
The drivetrain, servo, sonar, and receiver were all successfully configured to maneuver
M-DOT and take accurate distance measurements — without using the Arduino library.
With these components, the robot was able to demonstrate wall-following and maze-
navigation capabilities, culminating in two runs demonstrating full navigation: One with
smoother, safer, and slower defaults3, and one with a little more speed and a little more
sway4.

8 Documentation
No collaboration.

Resources used:

• Various datasheets for the ATmega328P, HC-SR04, L298, SG90, and AX-1883HS.
• Schematic for the Arduino UNO.
• Fritzing5 for wiring diagrams.
• Class resources such as slides and recorded videos.

3https://www.youtube.com/watch?v=uleEuvvNTLQ
4https://www.youtube.com/watch?v=FaIQ-QEpM34
5https://fritzing.org

[12]

https://www.youtube.com/watch?v=uleEuvvNTLQ
https://www.youtube.com/watch?v=FaIQ-QEpM34
https://fritzing.org

	Introduction
	Preliminary Design
	Servo Configuration
	General Timer Configuration
	Sonar Configuration
	Drivetrain Configuration
	Receiver Configuration

	Software Implementation
	Hardware Implementation
	Testing
	Debugging
	Testing Methodology
	Results

	Q&A
	Motor Driver
	IR Receiver

	Conclusion
	Documentation

